

2021

 Cormier-Daire et al. Orphanet J Rare Dis (2021) 16:333
 Orphanet Journal of Rare Diseases

 POSITION STATEMENT
 Open Access

 The first European consensus on principles of management for achoondroplasia
 Open Access

 Valerie Cormier-Daire¹, Moeenaldeen AlSayed^{2,3}, Tawfeg Ben-Omran⁴, Sérgio Bernardo de Sousa^{5,6}, Silvio Boero⁷, Svein O, Fredwall⁸, Encarna Guillen-Navarro⁹, Melita Irving¹⁰, Christian Lampe¹¹, Mohamad Maghnie¹², Geert Mortier¹³, Zagorka Peijin¹⁴ and Klaus Mohnike^{15*} •

ltem	Guiding principle	Vote
A	Achondroplasia is a <u>lifelong condition requiring lifelong management by an experienced MDT</u> , led by physicians/ clinicians experienced in achondroplasia management. Close monitoring during the first 2 years of life is critical	92
В	When a diagnosis of achondroplasia is made or suspected, either in utero or after birth, the family should be referred as soon as possible to a physician experienced in achondroplasia to discuss the prognosis and man- agement of the condition	100
С	Decisions around management should be made in the MDT setting jointly with the person with achondroplasia and/or their family	100
D	The primary goals of management are to enable anticipation, identification and treatment of problems, provide education and support to encourage a healthy lifestyle, positive self-esteem and mental health, autonomy and independence	100
E	Patients should have access to a variety of adaptive measures, support to ensure proper usage and access to approved treatment options as they become available	91
F	Regular monitoring in adolescence and adulthood should continue under an MDT with expertise in achondro- plasia management. Care should include genetic counselling, transition to adulthood, psychosexual well-being and management of pregnancy	100

2022

Fredwall et al. Orphanet Journal of Rare Diseases (2022) 17:318 https://doi.org/10.1186/s13023-022-02479-3

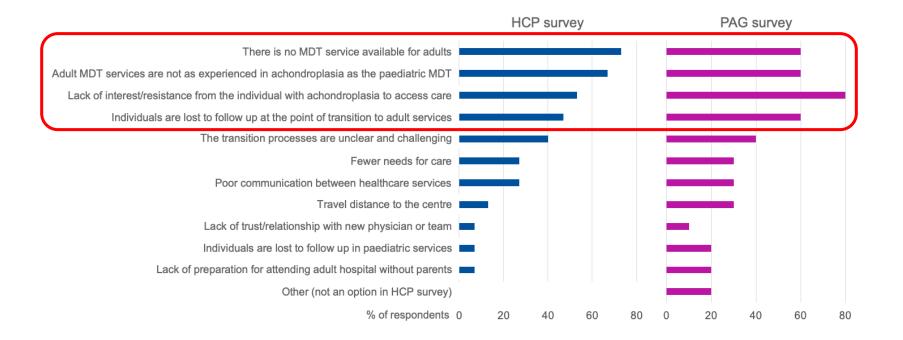
RESEARCH

Orphanet Journal of Rare Diseases

Open Access

Optimising care and follow-up of adults with achondroplasia

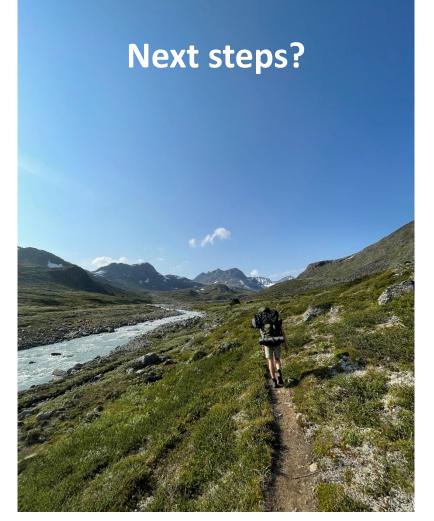
Svein Fredwall^{1*}^(D), Yana Allum², Moeenaldeen AlSayed^{3,4}, Inês Alves⁵, Tawfeg Ben-Omran⁶, Silvio Boero⁷, Valerie Cormier-Daire⁸, Encarna Guillen-Navarro^{9,10}, Melita Irving¹¹, Christian Lampe¹², Mohamad Maghnie^{13,14}, Klaus Mohnike¹⁵, Geert Mortier¹⁶, Sérgio B. Sousa^{17,18} and Michael Wright¹⁹


Online survey

Respondents:

- 16 healthcare professionals (10 countries)
- 19 PAG respondents (11 countries)

Key barriers to effective care of adults

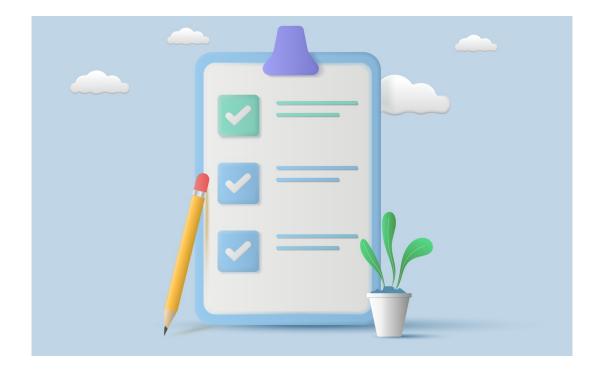


Conclusion

"....we are a long way from a standardised approach"

"It is important to understand current practices and care provision from the perspectives of both the healthcare provider and the recipients of care".

"It is also crucial to ensure that barriers to optimal care are identified and addressed"



Agenda

Saturday 22nd April, 09:00–12:00

Time	Торіс	Presenter		
09:00	Welcome and Introductions	Svein Fredwall		
09:10	Considerations for the Transition from			
	Paediatric to Adult Care in Achondroplasia			
	 What we've established in childhood 	Malita Inving		
	 Focus on mid-late childhood 	Melita Irving		
	 Gap between paediatric, knowledgeable 			
	MDT and primary care as an adult			
09:30	Challenges and Obstacles to Achondroplasia	Florian Innig		
	Care After Childhood – Perspectives from a			
	Large Patient Organisation			
	 Why are people reluctant to access care? 			
	 Focus on spinal symptoms v important 			
	 Talk about different age groups 			
09:50	Spinal Issues in Adolescents and Adults with	Philip Kunkel		
	Achondroplasia			
10:10	Why Should Adolescents and Adults with	Svein Fredwall		
	Achondroplasia have Access to MDT Follow-			
	up?			
10:30	Coffee break			
10:45	Discussion	Moderated by Svein Fredwall		
11:55	Closing remarks	Svein Fredwall		

Patient held checklist

EAF: Advances in Achondroplasia 2023 Why Should Adolescents and Adults with Achondroplasia have Access to MDT Follow-up?

Svein O. Fredwall

MD, PhD, Medical advisor TRS National Resource Centre for Rare Disorders, Sunnaas Rehabilitation Hospital Norway

UiO **: Faculty of Medicine** University of Oslo

• TRS NATIONAL RESOURCE CENTRE FOR RARE DISORDERS Sunnaas Rehabilitation Hospital

No disclosures

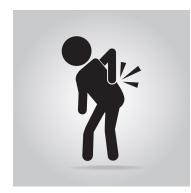
Potential medical complications in children with achondroplasia

2012

Review

Clinical management of achondroplasia

M J Wright,¹ M D Irving²


Box 2 Complications of achondroplasia (%) in childhood

- Neurological
 - ► Foramen magnum compression (5–10%)
 - Craniocervical instability (very rare)
 - Symptomatic hydrocephalus (6%)
- Orthopaedic
 - Progressive, unresolving thoracolumbar kyphosis
 - Decreased range of movement, elbows and hips
 - Tibial bowing (10%)
 - Symptomatic lumbar spinal stenosis (20%)
- ► ENT
 - Recurrent otitis media (89%)
 - Adenotonsillar hypertrophy (25%)
- Dental
 - ► Dental overcrowding (>50%)
- Respiratory
 - ► Sleep apnoea (75%)
- Growth
 - Short stature
 - Increased body mass index
- Development
 - Comparative motor delay
 - Speech delay (25%)
 - Conductive hearing loss (40%)
- Activities of daily living
 - Restricted through short stature, rhizomelic shortening of upper limbs
- Pyschosocial impact for child and family

D ' 0047		Infants	Toddlers and Children	Adults
Review 2017	Neurologic ENT	- Middle - - Obstruc - Pulmor pulmonal - Narrow foramen mag compression (gener hypertension) - Sudden infant death (ear effusions and infections tive sleep apnea (> 50% of patients) nary complications (rare) leading to possil ry disease gnum leading to possible clinical brainstem alized hypotonia and intracranial	
	dic -	- Ventriculomegaly - True hydrocephaly (ve Kyphosis up to tanding position Knee hypermobility	ery rare) - Hyperlordosis - Angular deformities of the lower limbs (<i>genua vara</i>) - External rotation of the hips - Obesity when height > 75 cm (> 50% of patients)	- Lumbar spinal stenosis (10% of patients) - Back pain - Peripheral nerve compression

Unger, S., Bonafé, L., & Gouze, E. (2017). Current Care and Investigational Therapies in Achondroplasia. Current osteoporosis reports, 15(2), 53–60

The Norwegian Adult Achondroplasia Study (2017–2019)

- 50 adult participants
- Mean and median age: 41 y (range 16–87)
- Population-based (76% inclusion rate)
- Symptomatic spinal stenosis
- Obstructive sleep apnoea
- Cardiovascular risk
- Hearing loss
- Physical functioning
- Activities of daily living
- Pain

Fredwall et al. Orphanet Journal of Rare Diseases (2020) 15:123 https://doi.org/10.1186/s13023-020-01397-6

Orphanet Journal of Rare Diseases

Open Access

RESEARCH

High prevalence of symptomatic spinal stenosis in Norwegian adults with achondroplasia: a population-based study

Svein O. Fredwall^{1,2*}, Unni Steen¹, Olga de Vries¹, Cecilie F. Rustad³, Heidi Beate Eggesbø⁴, Harald Weedon-Fekjær⁵, Ingeborg B. Lidal¹, Ravi Savarirayan⁶ and Grethe Månum²⁷

Received: 30 November 2018	Revised: 17 April 2019	Accepted: 5 June 2019
DOI: 10.1002/ajmg.a.61272		

ORIGINAL ARTICLE

medical genetics WILEY

Anthropometrics, diet, and resting energy expenditure in Norwegian adults with achondroplasia

```
Andrea Madsen RD<sup>1</sup> | Svein O. Fredwall MD<sup>2,3</sup> | Grethe Maanum MD PhD<sup>4</sup> | Christine Henriksen RD PhD<sup>1</sup> | Hanne B. Slettahjell RD<sup>4</sup> \odot
```

Fredwall et al. Orphanet J Rare Dis (2021) 16:156 https://doi.org/10.1186/s13023-021-01792-7

Orphanet Journal of Rare Diseases

RESEARCH

Open Access

Obstructive sleep apnea in Norwegian adults with achondroplasia: a population-based study

Svein O. Fredwall¹2[•] , Britt Øverland³, Hanne Berdal³, Søren Berg³, Harald Weedon-Fekjær⁴, Ingeborg B. Lidal¹, Ravi Savarirayan^{5†} and Grethe Månum^{2,6†}

Genetics in Medicine

www.nature.com/gim

Check for updates

ARTICLE

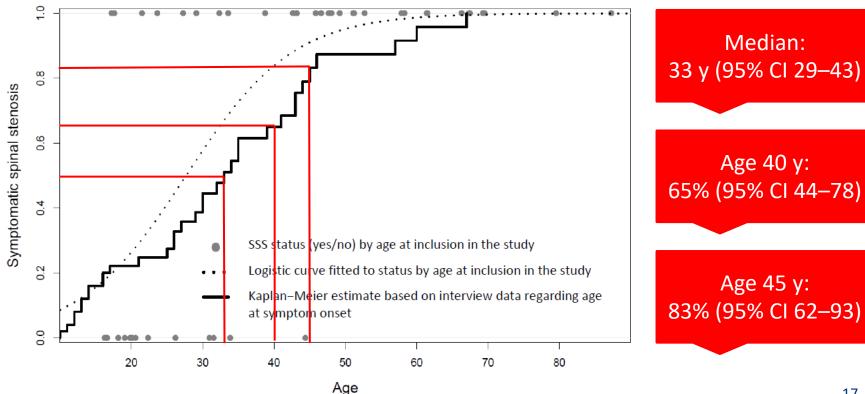
Cardiovascular risk factors and body composition in adults with achondroplasia

Svein O. Fredwall, MD ¹²²⁷, Jennifer Linge, MSc³⁴, Olof Dahlqvist Leinhard, PhD^{34,5}, Lisa Kjønigsen, MSc⁶, Heidi Beate Eggesbø, MD, PhD⁶, Harald Weedon-Fekjær, PhD⁷, Ingeborg Beate Lidal, MD, PhD¹, Grethe Månum, MD, PhD⁸, Ravi Savarirayan, MBBS, MD⁹ and Serena Tonstad, MD, PhD¹⁰

Key findings

Symptomatic spinal stenosis	≈ 70%
Impact on physical functioning and daily activities	High
Chronic pain	≈ 70%
Obstructive sleep apnoea	≈ 60%
Hypertension (in men)	≈ 50%
Hearing loss	≈ 50%
Lipids/cardiovascular risk & type 2 diabetes	Low

Stenosis vs non-stenosis group

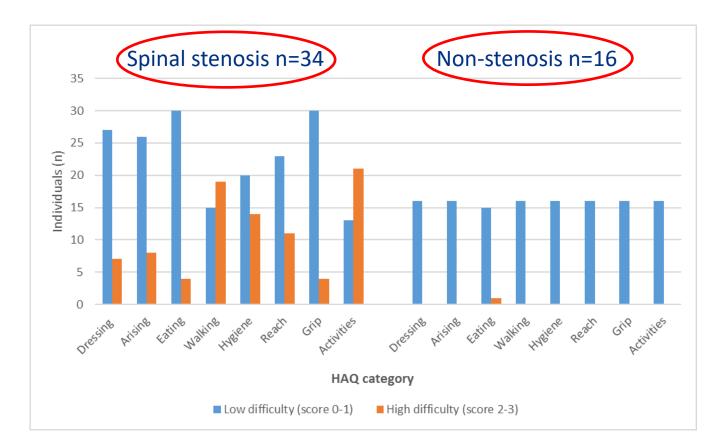

Stenosis group (n=34)

- Age at first symptom onset: range 10–67 years
- 82% (28/34) had undergone at least one spinal decompression
- 41% (14/34) reported persistent urinary incontinence
- 23% (7/34) reported persistent bowel incontinence
- Work participation: 27%

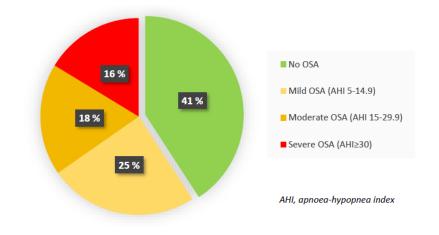
Non-stenosis group (n=16)

- None reported neurological complications
- Work participation: 94%

Estimated likelihood of symptomatic stenosis by age



Functional walking capacity (6MWT)


Metres

Impact on daily activities (ADL)

Obstructive sleep apnoea (OSA)

- 59% (29/49) had OSA (vs. general adult population: 4–8%)
- 2/3 had moderate severe OSA (AHI \ge 15)
- 48% were previously undiagnosed with OSA
- Prevalence in men > women (75% vs 45%)

Findings supported by other studies....

CLINICAL Journal of Genetics GENETICS Propagation

Clin Genet 2012 Printed in Singapore. All rights reserved © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd CLINICAL GENETICS doi: 10111/Cess 12045

Short Report

Cross-sectional assessment of pain and physical function in skeletal dysplasia patients

Masaki Matsushita¹ • Hiroshi Kitoh¹ • Kenichi Mishima¹ • Satoshi Yamashita² • Nobuhiko Haga³ • Sayaka Fujiwara³ • Keiichi Ozono⁴ • Takuo Kubota⁴ • Taichi Kitaoka⁴ • Naoki Ishiguro¹

2017

Qual Life Res (2017) 26:1337–1348 DOI 10.1007/s11136-016-1455-7

Factors associated with health-related quality of life (HRQOL) in adults with short stature skeletal dysplasias

Nitasha Dhiman¹ • Alia Albaghdadi² • Cheryl K. Zogg^{3,4} • Meesha Sharma⁴ • Julie E. Hoover-Fong⁵ • Michael C. Ain⁶ • Adil H. Haider^{4,7}

CrossMark

2020

 Received:
 17
 March
 2020
 Revised:
 1
 July
 2020
 Accepted:
 10
 July
 2020

 DOI:
 10.1002/ajmg.a.61825

 <t

ORIGINAL ARTICLE

medical genetics 🕅 WILEY

Natural history of achondroplasia: A retrospective review of longitudinal clinical data

Ericka Okenfuss¹ | Billur Moghaddam¹ | Andrew L. Avins²

2021 Genetics

Check for

updates

inMedicine

www.nature.com/gim

Check for updates

ARTICLE

Achondroplasia Natural History Study (CLARITY): a multicenter retrospective cohort study of achondroplasia in the United States

Julie E. Hoover-Fong 🔂 ^B, Adekemi Y. Alade 👼^{1,7}, S. Shahrukh Hashmi², Jacqueline T. Hecht^{2,3}, Janet M. Legare 🔂⁴, Mary Ellen Little⁵, Chengxin Liu¹, John McGready 🔞^{4,6}, Peggy Modaff⁴, Richard M. Pauli 🚱⁴, David F. Rodriguez-Buritica 😨², Kerry J. Schulze 🔂^{1,6}, Maria Elena Sema², Cory J. Smid^{4,8} and Michael B. Bober 🕼⁵

2023

Maghnie et al. Orphanet Journal of Rare Diseases (2023) 18:56 https://doi.org/10.1186/s13023-023-02652-2

RESEARCH

Open Access

Orphanet Journal of

Rare Diseases

Lifetime impact of achondroplasia study in Europe (LIAISE): findings from a multinational observational study

Mohamad Maghnie^{1,2}, Oliver Semler^{3,4}, Encarna Guillen-Navarro^{3,5,6}, Angelo Selicorni⁷, Karen E. Heath^{3,8,6}, Gabriele Haeusler⁹, Lars Hagenä^{3,10}, Andrea Merker¹¹, Antonio Leiva-Gea¹², Vanesa López González^{3,5,6}, Adalbert Raimann⁹, Mirko Rehberg^{3,4}, Fernando Santos-Simarro^{3,8}, Diana-Alexandra Ertl⁹, Pernille Axél Gregersen¹³, Roberta Onesimo¹⁴, Erik Landfeldt¹⁵, James Jarrett¹⁶, Jennifer Quinn¹⁶, Richard Rowell¹⁷, Jeanne Pimenta¹⁶, Shelda Cohen¹⁶, Thomas Butt¹⁶, Renée Shediac¹⁷, Swati Mukherjee¹⁶ and Klaus Mohnike^{3,18°}

Some key findings in other recent studies on adults (1)

Authors (year)	Adults (n)	Age, y	Some Key Findings
Alade et al (2012)	159	35.5 ± 16.7	 64% reported chronic pain Daily function and independent walking markedly impaired
Dhiman et al (2017)	106	≥ 18 y	Pain prevalence 74.5%
Matsushita et al (2019)	108	20–67	 Proportion undergone spine surgery: 57% in the age group 40–49 y 88% in the age group 50–59 y
Hoover-Fong et al (2019)	234	38.6 (SD 14.1)	 44% were hypertensive Males > females (56% vs 35%)

Some key findings in other recent studies on adults (2)

Authors (year)	Adults (n)	Age, y (range)	Some Key Findings
Okenfuss et al (2020)	114	Mean 12.6	 18% had cervical spinal stenosis 42% had lumbar spinal stenosis 69% overall (children and adults) had OSA
Hoover-Fong et al (2021) The CLARITY Study	1374	15.4 ± 13.9 (0–79.7)	 80% had ≥ 1 achondroplasia-related surgery 38% had moderate to severe OSA
Magnie et al (2023) The LIASE Study	186 Adults: 84 (45%)	21.7 ± 17.3 (5.0 – 84.4)	 95% ≥ 1 medical complication Highest complication rate < 10 y and > 40 y 72% ≥ 1 surgical procedure Impaired mobility Pain prevalence 70.3%

Psychosocial health in adults with achondroplasia

- Psychosocial health reported lower in adults with achondroplasia
- More anxiety, depression, and low self-esteem
- Lower work participation

- 1. Jennings SE, Ditro CP, Bober MB, et al. Prevalence of mental health conditions and pain in adults with skeletal dysplasia. Qual Life Res. 2019;28(6):1457-1464
- 2. Yonko EA, Emanuel JS, Carter EM, Raggio CL. Quality of life in adults with achondroplasia in the United States. Am J Med Genet A. 2021;185(3):695-701
- 3. Fredwall SO, Steen U, de Vries O, et al. High prevalence of symptomatic spinal stenosis in Norwegian adults with achondroplasia: a populationbased study Orphanet J Rare Dis. 2020;15(1):123.
- 4. Maghnie M, Semler O, Guillen-Navarro E, et al. Lifetime impact of achondroplasia study in Europe (LIAISE): findings from a multinational observational study. Orphanet J Rare Dis. 2023;18(1):56.

Conclusion and implications for clinical practice

- Achondroplasia is a <u>lifelong condition</u> with a <u>high burden of medical</u> complications
- Impact on physical functioning, daily activities, pain, and psychosocial health

Demonstrating the need for lifelong care

Multidisciplinary

- Anticipatory
- Lifelong

International Consensus Statement on the diagnosis, <u>multidisciplinary</u> management and <u>lifelong care</u> of individuals with achondroplasia

Nov 2021

CONSENSUS

SIAIFI

Check for update

Recommendations (11) for adults

Recommendation 74. Ongoing back pain, combined with neurological symptoms, such as claudication, spasticity, reduced walking distance, or bladder and/or bowel dysfunction, might be related to spinal stenosis in adults with achondroplasia and an MRI scan of the entire spine should be considered^{20,80,86}.

Recommendation 75. In the presence of symptomatic spinal stenosis in adults with achondroplasia, where imaging demonstrates evidence of spinal cord impingement or compression, a prompt referral to a spine centre experienced in the management of spinal stenosis in achondroplasia should be considered^{20,75}.

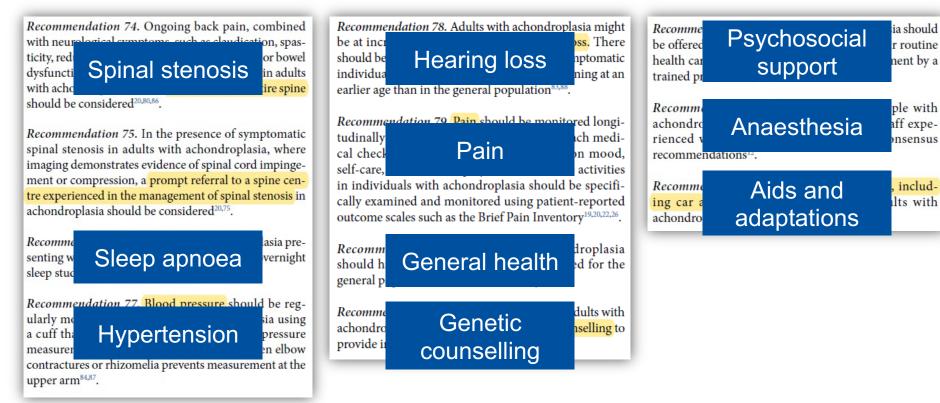
Recommendation 76. In adults with achondroplasia presenting with symptoms suggestive of OSA, an overnight sleep study should be performed⁸¹.

Recommendation 77. Blood pressure should be regularly monitored in adults with achondroplasia using a cuff that fits the arm appropriately. Blood pressure measurement on the forearm is an option when elbow contractures or rhizomelia prevents measurement at the upper arm^{84,87}.

Recommendation 78. Adults with achondroplasia might be at increased risk of early-onset hearing loss. There should be a low threshold for assessment of symptomatic individuals and consideration of routine screening at an earlier age than in the general population^{83,88}.

Recommendation 79. Pain should be monitored longitudinally in adults with achondroplasia at each medical check-up. The effect that pain has upon mood, self-care, education, employment and leisure activities in individuals with achondroplasia should be specifically examined and monitored using patient-reported outcome scales such as the Brief Pain Inventory^{19,20,22,26}.

Recommendation 80. Adults with achondroplasia should have routine health checks as advised for the general population in their community.


Recommendation 81. Older adolescents and adults with achondroplasia should be offered genetic counselling to provide information on reproductive options.

Recommendation 82. Adults with achondroplasia should be offered psychosocial support as part of their routine health care, which may include formal assessment by a trained professional^{23,25}.

Recommendation 83. Anaesthesia for people with achondroplasia should be performed by staff experienced with achondroplasia and follow consensus recommendations¹².

Recommendation 84. Aids and adaptations, including car adaptations, are required for adults with achondroplasia²⁰.

Recommendations (11) for adults

Implementation From Clinical Guidelines to Clinical Practice

Discussion

